Bio-Synthetic Assemblages: Computational Assembly Of Bio-Sand Blocks Made From Dune Sand

Marcus Farr Tongji / AUS

Biomineralization is the process by which living organisms produce minerals to harden or stiffen exoskeletons and existing tissues. Mineralization is a widespread phenomenon among all taxonomic animal kingdoms. The material used in this project attempts to replicate the process of hardening and mineralizing dune sand found in the Sahara and Arabian deserts. This material is found in vast quantities but thought to be of little use in modern construction. The new bio-synthetic material used in this study is paired with the process of augmented construction and computational placement of tectonic units. The paper overlays a broad question of how organizational systems might integrate architecturally with regionally appropriate bio-material composed of dune sand and, more specifically, how this material process creates a consistent, viable architectural outcome with dune sand as a primary ingredient for architectural material. As the material agenda reaches maturity, we ask how the production of this bio-material can be combined with augmentation and computation to articulate consistent architectural outcomes within a desert-specific environment. The role of this computational and material process adds to the current dialogue of designing in extreme environments and aligns with the UN Sustainable Development Goals for sustainable communities, responsible consumption and production, climate action, and life living on land.

Keywords: Sdg11: Sustainable Cities And Communities, Sdg12: Responsible Consumption And Production, Sdg13: Climate Action, Sdg15: Life On Land

View Full Paper